SGI research projects

Volume-encoded parameterization

by Alice Mehalek, Marcus Vidaurri, and Zhecheng Wang


UV mapping or UV parameterization is the process of mapping a 3D surface to a 2D plane. A UV map assigns every point on the surface to a point on the plane, so that a 2D texture can be applied to a 3D object. A simple example is the representation of the Earth as a 2D map. Because there is no perfect way to project the surface of a globe onto a plane, many different map projections have been made, each with different types and degrees of distortion. Some of these maps use “cuts” or discontinuities to fragment the Earth’s surface.

In computer graphics, the typical method of UV mapping is by representing a 3D object as a triangle mesh and explicitly assigning each vertex on the mesh to a point on the UV plane. This method is slow and must be repeated often, as the same texture map can’t be used by different meshes of the same object.

For any kind of parametrization or UV mapping, a good UV map must be injective and should be conformal (preserving angles) while having few cuts. Ideally it should also be isometric (preserve relative areas). In general, however, more cuts are needed to achieve less distortion.

Volume-encoded parameterization

Our research mentor, Marco Tarini, developed the method of Volume-encoded UV mapping. In this method, a surface is represented by parametric functions and each point on the surface is mapped to a UV position as a function of its 3D position. This is done by enclosing the surface or portion of the surface in a unit cube, or voxel, and assigning UV coordinates to each of the cube’s eight vertices. All other points on the surface can be mapped by trilinear interpolation. Volume-encoded parametrization has the advantage of only needing to store eight sets of UV coordinates per voxel, instead of unique locations of many mesh vertices, and can be applied to different types of surface representations, not just meshes. 

We spent the first week of our research project learning about volume-encoded parametrization by exploring the 2D equivalent: mapping 2D curves to a one-dimensional line, u. Given a curve enclosed within a unit square, our task was to find the u-value for each corner of the square that optimized injectivity, conformality, and orthogonality. We did this using a Least Squares method to solve a linear system consisting of a set of constraints applied to points on the surface. All other points on the curve could then be mapped to u by bilinear interpolation.

A quarter circle (the red curve on the xy plane of the 3D plot) is mapped to a line, u, which is also represented as the height on the z axis in the 3D plot. The surface in the 3D plot is obtained by bilinear interpolation of the height of each corner of the square, and the red curve along the surface represents the path of the quarter circle mapped to 1D.
Each point on the path has a unique height, indicating an injective mapping.

An injective mapping was not possible for portions of a circle greater than a semicircle.
Each point on the path of u does not have a unique height, indicating loss of injectivity. There is also distortion in the middle where the slope is variable.

In Week 2 of the project, we moved on to 3D and created UV maps for portions of a sphere, using a similar method to the 2D case. Some of the questions we wanted to answer were: For what types of surfaces is volume-encoded parametrization possible? At what level of shape complexity is it necessary to introduce cuts, or split up the surface into smaller voxels? In the 2D case, we found that injectivity could be preserved when mapping curves less than half a circle, but there were overlaps for curves greater than a semicircle.

One dimension up, when we go into the 3D space, we found that uniform sampling on the quarter sphere was challenging. Sampling uniformly in the 2D parametric space will result in a distorted sampling that becomes denser when getting closer to the north pole of the sphere. We tried three different approaches: rewriting the parametric equations, sampling in a unit-sphere, and sampling in the 3D target space and then projecting the sample points back to the surface. Unfortunately, all three methods only worked with a certain parametric sphere equation.

When mapping a portion of a sphere to 2D, the grid allows us to see where the mapping is distorted. This mapping is most accurate at the north pole, while areas and angles both become distorted toward the equator.

In conclusion, over the two weeks, we designed and tested a volume-encoded least-squares conformal mapping in both 2D and 3D. In the future, we plan to rewrite the code in C++ and run more experiments.


2D Shape Representation

Silvia Sellán’s talks on Day 3 of SGI gave a large-scale overview of shape representation, which I really appreciated as a Geometry Processing newbie. 

First, what is Shape Representation? To describe Geometry Processing, Silvia quoted Alec Jacobson: “Geometry Processing is a subfield of biology.” Just as biological organisms have a life cycle of birth–growth–death, so do shapes: they are born (created in a computer program), then they are manipulated and changed through various algorithms, and then they die–or rather, they leave the computer and go into the world as a finished product, such as a rendered image in a video game. Shape Representation encompasses the methods by which a shape can be created. 

Silvia gave us an introduction to Shape Representation by focusing first on 2D methods. Using the example of a simple curve, we looked at four ways of representing the curve in 2D. Each method has its advantages and disadvantages:

The simplest way of representing a curve is a point cloud, or a finite subset of points on the curve. The advantage is that this information is easy to store, since it’s just a list of coordinates. However, it lacks information about how those points are connected, and one point cloud could represent many different shapes.

The second method is a polyline or polygonal line, which consists of a point cloud plus a piecewise linear interpolation between connected points. Like a point cloud, a polyline is easy to store. It’s also easy to determine intersections between them, and easy to query–to determine whether any given point lies on the polyline. However, since a polyline is not differentiable at the vertices, it does not allow for differential quantities such as tangents, normal vectors, or curvature. It also needs many points to be stored in order to visually approximate the desired curve. 

Third, we can use a spline, which is a piecewise polynomial interpolation with forced continuous derivatives. Splines have differential continuity and don’t need many points in order to approximate a curve but are more difficult to query and to solve intersections. 

Finally, we have implicit shape representations, which use implicit functions to define a shape as the region of the plane where the function equals zero. The advantages of implicit representations include easy computation of boolean operations, and it is also possible to treat the shape as an image and use image processing tools and machine learning algorithms. However, not every shape can be represented implicitly, and they are hard to manipulate for many graphics applications. 

These methods of shape representation in 2D formed the scaffolding for us to later build an understanding of shape representation in 3D.